| \beta_0=\sqrt{\frac{A_0}{A_p}}=\frac{d_{A0}}{d_{Ap}} | | |
| \beta_{2\;max}=\frac{C_\beta+\beta_1}{\beta_1} | | |
| \beta_{3\;max}=\frac{2\cdot C_\beta+\beta_1}{\beta_1\cdot\beta_2} | | |
| \beta_{4\;max}=\frac{3\cdot C_\beta+\beta_1}{\beta_1\cdot\beta_2\cdot\beta_3} | | |
| \beta_{ges}=\prod_0^n\beta_{n} | | |
| \beta_{max}=\left(\beta_{100}+e\right)-\frac{e\cdot d_1}{100\cdot s_0} | | |
| \beta_{n\;max}=\beta_1\cdot n^{-0,07\cdot\beta_1} | | |
| \beta_{n\;max}=\frac{C_\beta\cdot\left(n-1\right)+\beta_1}{\beta_1\cdot\beta_2\cdot...\cdot\beta_{n-1}} | | |
| \beta_{n}~~=\frac{d_{n}}{d_{n+1}} | | |
| \Delta l=\frac\sigma E\cdot l_{0} | | |
| \Delta V=V_0\cdot\left[\left(\frac{p_0}{p_1}\right)^\frac1\kappa-\left(\frac{p_0}{p_2}\right)^\frac1\kappa\right] | | |
| \Delta\approx\left(0,45\cdot\sqrt[3]D+0,001\cdot D\right)\cdot\left(\sqrt[5]{10}\right)^{\left(IT-6\right)}\cdot10 | | |
| \eta_{ges}=\eta_v\cdot\eta_{hm} | | |
| \lambda=\frac {4\cdot l_{K}}{d} | | |
| \lambda=\frac {l_{K}}{i} | | |
| \lambda=\frac {l_{K}}{i} | | |
| \lambda=\frac{4\cdot l_{K}}{\sqrt{D^{2}+d^{2}}} | | |
| \lambda=\frac{4\cdot l_{K}}{\sqrt{d_a^{2}+d_i^{2}}} | | |
| \sigma_Z=\frac{F_{ges}}{d_1\cdot\pi\cdot s_0} | | |
| \sigma_Z=\frac{F_{Zg}}{b\cdot s_0} | | |
| \sigma_{AB}=\frac{F_{AB}}{A_{C}} | | |
| \sigma_{d~zul}\leq\left\{\begin{array}{l}\frac{E\cdot\pi^{2}}{3\cdot\lambda^{2}}&\mbox{if $\lambda$ $\geq $ 30}\\2620-62\cdot \lambda&\mbox{if 10 $\leq$ $\lambda$$\leq$ 30}\\2000&\mbox{if $\lambda$ $\leq $ 10}\end{array}\right. | | |
| \sigma_{d~zul}\leq\left\{\begin{array}{l}\frac{E\cdot\pi^{2}}{5\cdot\lambda^{2}}&\mbox{if $\lambda$ $\geq $ 30}\\2480-68\cdot \lambda&\mbox{if 10 $\leq$ $\lambda$$\leq$ 30}\\1800&\mbox{if $\lambda$ $\leq $ 10}\end{array}\right. | | |
| \sigma_{P}=\frac{F_{S}}{A_{P}} | | |
| \sigma_{S}=\frac{F_{S}}{A_{S}} | | |
| \varphi=\ln\frac{A_{0}}{A_{1}}=\ln\frac{d_{0}^{2}-d_{1}^{2}}{d_{2}^{2}-d_{3}^{2}} | | |
| \varphi_1=\beta_a=\ln\left(\frac{d_0}{d_A}\right) | | |
| \varphi_2=\beta_i=\ln\left(\frac{d_V}{d_1}\right)=\ln\left(\frac{\sqrt{d_0^2-d_A^2+d_1^2}}{d_1}\right) | | |
| A=\frac{\ln\left(\frac{k_{fm}\cdot s_0\cdot\mu_N}{2\cdot p_N}+1\right)}{a\cdot\mu_N} | | |
| A=\frac{r^2}2\cdot\left(2\cdot\alpha-\sin\;\left(2\cdot\alpha\right)\right) | | |
| A_D=\frac{d_K^2\cdot\mathrm\pi}4 | | |
| A_D=d_K^2\cdot\frac\pi4~~~~~~~A_Z=\left(d_K^2-d_S^2\right)\cdot\frac\pi4 | | |
| A_D=n\cdot d_K^2\cdot\frac\pi4 | | |
| A_D=n\cdot d_{K}^2\cdot\frac\pi4 | | |
| a_R=\frac{F_{BR}}{\pi\cdot\left(d_1+s_0\right)\cdot s_0\cdot R_m} | | |
| A_S=\left(d_K^2-d_S^2\right)\cdot\frac\pi4 | | |
| A_S=n\cdot\frac{\pi}4\cdot(d-P\cdot0,9382)^2 | | |
| A_S\geq\frac{F_{SG}}{{\displaystyle\frac{R_{p0,2}}{2.975}}-{\displaystyle\frac{2541}{l_{Kl}}}} | | |
| A_Z=\frac{\left(d_K^2-d_S^2\right)\cdot\pi}4 | | |
| A_Z=n\cdot \left(d_K^2-d_S^2\right)\cdot\frac\pi4 | | |
| A_Z=n\cdot\left(d_K^2-d_S^2\right)\cdot\frac\pi4 | | |
| C=\frac{A_L}{r_e}<64 | | |
| C=\frac{A_L}{r_e}<64 | | |
| C=\sqrt{0,6+\frac{0,4\cdot d_1^2}{d_0^2}} | | |
| C=R_m\cdot\left(\frac en\right)^n=R_m\cdot\left(\frac{2,72}n\right)^n | | |
| d_{A0}=\sqrt{\frac4\pi\cdot A_0}=1,13\cdot\sqrt{A_0} | | |
| d_{A\;max}=C\cdot d_0 | | |
| d_{Ap}=\sqrt{\frac4\pi\cdot A_p}=1,13\cdot\sqrt{A_p} | | |
| E = mc^2 | | |
| E=mc^2 | | |
| Etest = mc^2 | | |
| Exxxx = mc^2 | | |
| F_b=\pi\cdot d_1\cdot s_0\cdot\frac{k_{fi}\cdot s_0}{4\cdot r_M} | | |
| F_D=n\cdot p\cdot\eta_K\cdot A_D | | |
| F_D=p\cdot\eta_K\cdot A_D | | |
| F_N=\frac\pi4\cdot\left[d_0^2-\left(d_1+2\cdot r_M+2\cdot u_z\right)^2\right]\cdot P_n | | |
| F_U=n\cdot\Delta\sigma\cdot s_0 | | |
| F_Z=n\cdot p\cdot\eta_K\cdot A_Z | | |
| F_Z=p\cdot\eta_K\cdot A_Z | | |
| F_{ab}=0,25\cdot F_{St} | | |
| F_{ab}=\sigma_{H}\cdot A_{p} | | |
| F_{BR}=\pi\cdot\left(d_1+s_0\right)\cdot s_0\cdot R_m\cdot a_R | | |
| F_{ges}=F_{id}+F_{b}+F_{R\;B/N}+F_{R\;B/Z}+F_{R\;B/ZR} | | |
| F_{H}=l_{St}\cdot s_{t}\cdot R_{M~max}\cdot \sin \alpha | | |
| F_{H~e}=25\%\cdot F_{H} | | |
| F_{id}=d_1\cdot\pi\cdot s_0\cdot k_{fm}\cdot\ln\left(\frac{d_A}{d_1}\right) | | |
| F_{K}=l_{St}\cdot s_{0}\cdot R_{M~max}\cdot K | | |
| F_{K~e}=30\%\cdot F_{K} | | |
| F_{max}\approx F_{ges}\left(d_A\approx0,77\cdot D_0;k_{fm}\approx1,3\cdot R_m\right) | | |
| F_{N}=\frac{\pi}4\cdot\left[D_{0}^2-\left(d_{1}+2\cdot r_{M}+2\cdot u_{z}\right)^{2}\right]\cdot P_{N} | | |
| F_{R\;B/N}=\mu_1\cdot\frac\pi4\cdot\left(d_A^2-d_1^2\right)\cdot p_N | | |
| F_{R\;B/ZR}=\left(e^{\mu_3\cdot\frac\pi2}-1\right)\cdot\left(F_{id}+F_{R\;B/N}+F_{R\;B/Z}\right) | | |
| F_{R\;B/Z}=\mu_2\cdot\frac\pi4\cdot\left(d_A^2-d_1^2\right)\cdot p_N | | |
| F_{S g}=0,8^{2}\cdot l_S\cdot s_{0}\cdot R_{m} | | |
| F_{St}=l_U\cdot s_{min}\cdot k_{fm}\cdot sin\;\alpha\approx l_U\cdot s_0\cdot R_m\cdot sin\;\alpha | | |
| F_{S}\approx 0,8\cdot l_S\cdot s_{0}\cdot R_{m} | | |
| F_{zb}=\pi\cdot d_1\cdot s_0\cdot\frac{k_{fm}}{1000} | | |
| F_{ZB}=\pi\cdot d_{1}\cdot s\cdot\frac{k_{fm}}{1000} | | |
| F_{Zg}=\mu_N\cdot F_N\cdot\left(1+e^{\mu_Z\cdot\frac\pi2}\right)+0,91\cdot R_m\cdot\frac{b\cdot s_0}{\frac{r_M+r_{St}}{s_0}+1} | | |
| F_{ZW}=0,5\cdot F_{Z}+5\cdot d_{2}\cdot s_{0}\cdot k_{fm}\cdot ln(\beta_{1}) | | |
| F_{z}~~=\pi\cdot d_{1}\cdot s_0\cdot\frac{k_{fm}}{1000}\cdot\frac {ln(\beta_{0})}{0,65} | | |
| G=\frac1{2\cdot\left(1+v\right)}\cdot E | | |
| i=\frac d4 | | |
| I_\eta=\frac{I_y+I_z}2+\frac{I_y-I_z}2\cdot\cos\left(2\cdot\varphi\right)-I_{yz}\cdot\sin\left(2\cdot\varphi\right) | | |
| I_\zeta=\frac{I_y+I_z}2-\frac{I_y-I_z}2\cdot\cos\left(2\cdot\varphi\right)+I_{yz}\cdot\sin\left(2\cdot\varphi\right) | | |
| I_x=\frac{h_a^3}{36}\cdot\left(a_1+a_2\right) | | |
| I_y=\frac{h_a}{36}\cdot\left(a_2^3+2\cdot a_1^2\cdot a_2+a_1^3+2\cdot a_2^2\cdot a_1\right) | | |
| I_y=\frac{r^4}4\cdot\left(\alpha-\frac23\cdot\sin\left(2\cdot\alpha\right)+\frac1{12}\cdot\sin\left(4\cdot\alpha\right)\right) | | |
| I_{\eta\zeta}=\frac{I_y-I_z}2\cdot\sin\left(2\cdot\varphi\right)+I_{yz}\cdot\cos\left(2\cdot\varphi\right) | | |
| i_{min}=\sqrt{\frac{I_{min}}A} | | |
| I_{xy}=0 | | |
| I_{xy}=\frac{h_a^2}{72}\cdot\left(a_2^2-a_1^2\right) | | |
| I_{x}=\frac{r^4}{144}\cdot\left(36\cdot\alpha-9\cdot\sin\left(4\cdot\alpha\right)-\frac{128\cdot\sin^6\left(\alpha\right)}{2\cdot\alpha-\sin\left(2\cdot\alpha\right)}\right) | | |
| K_e=\left(F_{Zmax}\cdot h_z\cdot m_u+F_{nh}\cdot h_{nh}\cdot m_{nh}\right)\cdot\;K_I\cdot M\cdot\frac1{3600\cdot\eta_{ges}} | | |
| K_e=m_Z\cdot M\cdot w_e\cdot K_I | | |
| k_f=260\cdot\varphi^{0,1975} | | |
| k_f=356\cdot\varphi^{0,19} | | |
| k_f=452\cdot\left(0,003+\varphi\right)^{0,252} | | |
| k_f=502\cdot\varphi^{0,18} | | |
| k_f=\left\{\begin{array}{lc}1480\cdot\left(0,08+\varphi\right)^{0,447}&if\;\varphi\;<0,4\\1045&else\end{array}\right. | | |
| k_f=C\cdot\left(\varphi_0+\varphi\right)^n | | |
| k_f=C\cdot\left(\varphi_0+\varphi\right)^n | | |
| k_f=C\cdot\varphi^n | | |
| k_{fm}=130\cdot\left(\varphi_1^{0,1975}+\varphi_2^{0,1975}\right) | | |
| k_{fm}=178\cdot\left(\varphi_1^{0,19}+\varphi_2^{0,19}\right) | | |
| k_{fm}=226\cdot\left(\left(0,003+\varphi_1\right)^{0,252}+\left(0,003+\varphi_2\right)^{0,252}\right) | | |
| k_{fm}=251\cdot\left(\varphi_1^{0,18}+\varphi_2^{0,18}\right) | | |
| k_{fm}=\frac{k_{f1}+k_{f2}}2 | | |
| k_{fm}\approx1,3\cdot R_m | | |
| k_{f}=C\cdot\varphi^{n} | | |
| n=\frac{\ln\left(\beta_{ges}\right)-ln\left(\beta_1\right)}{\ln\left(\beta_n\right)} | | |
| n=\ln\left(1+\varepsilon_{gl}\right) | | |
| n\approx\varphi_{gl}=\ln\left(1+\varepsilon_{gl}\right) | | |
| n\approx\varphi_{gl}=ln(1+A_{gl}) | | |
| n_B=\frac{T_{bB}}{T_{pB}} | | |
| N_G=\frac{T_B-T_O-T_T-T_W}{T_B}\cdot100\% | | |
| N_G=\frac{T_N}{T_B}=\frac{T_B-T_O-T_T-T_W}{T_B}\cdot100\% | | |
| n_R=\frac{n_A}{n_{wT}} | | |
| n_{res}=\frac{T_{pB}-T_{bP}}{\frac1M+\frac{t_{rB}}{L}} | | |
| P=\frac{Q_{Pth}\cdot p}{600\cdot\eta_{ges}} | | |
| P=\frac{Q_{Pth}\cdot p}{600\cdot\eta_{ges}} | | |
| p_2=\frac{p_0}{\left[\left(\frac{p_0}{p_1}\right)^\frac1\kappa-\frac{\Delta V}{V_0}\right]^\kappa} | | |
| p_2=\frac{p_1}{\left[1-\frac{\Delta V}{V_0\cdot\left(\frac{p_0}{p_1}\right)^\frac1\kappa}\right]} | | |
| P_{n}=\left[\left(\beta_{0}-1\right)^{2}+\frac{d_{1}}{200\cdot s_{0}}\right]\cdot\frac{R_{m}}{400} | | |
| q_D=\frac{V_D}{T_D} | | |
| q_D=n\cdot \frac{V_D}{T_D}~~~~q_Z=n\cdot \frac{V_Z}{T_Z} | | |
| q_Z=\frac{V_Z}{T_Z} | | |
| Q_{Pth}=\frac{600\cdot P\cdot\eta_{ges}}p | | |
| r _{M~max}\leq16\cdot s _{0} | | |
| R=\frac{\varphi_b}{\left|\varphi_l\right|+\left|\varphi_b\right|}=\frac{\varphi_b}{\varphi_s} | | |
| r_M=0,035\cdot\left[50+\left(D_0-d_0\right)\right]\cdot\sqrt{s_0} | | |
| r_M=\frac{0,04\cdot D_0}{d_1\cdot\beta_{100}}\cdot\left[50+\left(D_0-d_1\right)\right]\cdot\sqrt{s_0} | | |
| r_M=\left(0,5 … 0,8\right)\cdot\sqrt{\left(D_0-d_1\right)\cdot s_0}=C\cdot\sqrt{\left(D_0-d_1\right)\cdot s_0} | | |
| r_M=\left(5 … 15\right)\cdot s_0=C\cdot s_0 | | |
| r_{M~max}\leq16\cdot s_{0} | | |
| r_{M~n}=\left(0,6 … 0,8\right)\cdot r_{Mn-1}=C\cdot r_{M~n-1} | | |
| r_{M~opt}=(0,125-0,78\cdot \mu)\cdot R_{P~0,2}\cdot s_{0} {^{2}} | | |
| r_{St}=\frac{d_{St}}3 | | |
| r_{St}=\frac{d_{St}}{5 … 10}=\frac{d_{St}}C | | |
| r_{St}\geq\left(4 … 5\right)\cdot s_{0} | | |
| s_0>0,011\cdot d_n\cdot\beta_n | | |
| s_{max}=s_0\cdot\sqrt{\beta_0} | | |
| T=1-\frac{F_{Z\;max}}{F_{BR}} | | |
| T_{bB}=\frac{n_A}{L}\cdot t_{rB}+n_A\cdot\frac1M | | |
| t_{eB}=\frac1M | | |
| T_{pB}=n_S\cdot N_G\cdot n_{AT}\cdot AZ | | |
| u_Z=\left(1,3...1,5\right)\cdot s_0 | | |
| u_Z=s_0\cdot\left[1+0,035\cdot\left(\beta_{100}-1\right)\right]^2 | | |
| u_{S}=\frac{1}{150}\cdot s_{0}\cdot\sqrt{\frac{0,8\cdot R_{m}}{10}} | | |
| u_{S}=\frac{1}{200}\cdot s_{0}\cdot\sqrt{\frac{0,8\cdot R_{m}}{10}} | | |
| u_{S}=\frac{1}{240}\cdot s_{0}\cdot\sqrt{\frac{0,8\cdot R_{m}}{10}} | | |
| u_{S}=\frac{1}{320}\cdot s_{0}\cdot\sqrt{\frac{0,8\cdot R_{m}}{10}} | | |
| u_{Z\;1}\approx s_{0}+0,05\cdot\sqrt{s_{0}} | | |
| u_{Z\;1}\approx s_{0}+0,1\cdot\sqrt{s_{0}} | | |
| u_{Z\;1}\approx s_{0}+0,2\cdot\sqrt{s_{0}} | | |
| u_{Z\;1}\geq1.2\cdot s_{0} | | |
| u_{Z\;2}\approx s_{0} | | |
| u_{Z\;2}\approx 1,08\cdot s_{0} | | |
| u_{Z\;2}\approx s_{0} | | |
| u_{Z\;2}\geq1.25\cdot s_{0} | | |
| u_{Zmax}\leq s_0\cdot\sqrt{\beta_0} | | |
| u_{Z}=s_{0}\cdot\left[1+0.001\cdot R_{m}\cdot\left(\beta_{100}-1\right)\right]^2 | | |
| V_0=\frac{\Delta V}{\left[\left(\frac{p_0}{p_1}\right)^\frac1\kappa-\left(\frac{p_0}{p_2}\right)^\frac1\kappa\right]} | | |
| V_0=\frac{p_1}{\left(\frac{p_0}{p_1}\right)^\frac1\kappa\cdot\left[1-\left(\frac{p_1}{p_2}\right)^\frac1\kappa\right]} | | |
| v_A=\frac{Q_{Pth}\cdot\eta_{Pvol}\cdot10\cdot\eta_{Kvol}}{n\cdot d_K^2\cdot\frac\pi4} | | |
| v_D=\frac{s_H}{T_D} | | |
| V_D=A_D\cdot s_H | | |
| V_D=A_D\cdot s_H | | |
| V_D=n\cdot A_D\cdot s_H~~~~~~V_Z=n\cdot A_Z\cdot s_H | | |
| v_R=\frac{Q_{Pth}\cdot\eta_{Pvol}\cdot10\cdot\eta_{Kvol}}{n\cdot\left(d_K^2-d_S^2\right)\cdot\frac\pi4} | | |
| v_Z=\frac{s_H}{T_Z} | | |
| V_Z=A_Z\cdot s_H | | |
| V_Z=A_Z\cdot s_H | | |
| V_{TS}=1-\frac{T_T}{T_B} | | |
| W=m_S\cdot F_{S}\cdot s_{0} | | |
| w_e=\left(F_{Zmax}\cdot h_z\cdot m_u+F_{nh}\cdot h_{nh}\cdot m_{nh}\right)\cdot\;\frac1{3600\cdot\eta_{ges}\cdot m_{Z}} | | |
| W_H=m_H\cdot F_{St}\cdot h | | |
| W_U=\int F=m_u\cdot h_z\cdot F_{max} | | |
| W_{H}=\frac{2}{3}\cdot F_{H}\cdot h_{H} | | |
| W_{K}=\frac{2}{3}\cdot F_{K}\cdot h_{K} | | |
| y_0=\frac{\left(2\cdot r\cdot\sin\;\alpha\right)^3}{12\cdot A} | | |
| z_a=\frac{\Delta h}{0,5\cdot\left(h_{max}+h_{min}\right)} | | |
| z_b=\frac{\Delta h}{h_{min}} | | |