Gleichungen

31.4
183
svg
latex
type
resolution
\require{color}\definecolor{myred}{RGB}{255,0,0} \beta_{\color{myred}0}=\sqrt{\frac{A_{\color{myred}0}}{A_{\color{myred}p}}}=\frac{d_{\color{myred}A0}}{d_{\color{myred}Ap}}
\beta_0=\sqrt{\frac{A_0}{A_p}}=\frac{d_{A0}}{d_{Ap}}
\require{color}\definecolor{myred}{RGB}{255,0,0} \beta_{\color{myred}2\;max}=\frac{C_{\color{myred}\beta}+\beta_{\color{myred}1}}{\beta_{\color{myred}1}}
\beta_{2\;max}=\frac{C_\beta+\beta_1}{\beta_1}
\require{color}\definecolor{myred}{RGB}{255,0,0} \beta_{\color{myred}3\;max}=\frac{2\cdot C_{\color{myred}\beta}+\beta_{\color{myred}1}}{\beta_{\color{myred}1}\cdot\beta_{\color{myred}2}}
\beta_{3\;max}=\frac{2\cdot C_\beta+\beta_1}{\beta_1\cdot\beta_2}
\require{color}\definecolor{myred}{RGB}{255,0,0} \beta_{\color{myred}4\;max}=\frac{3\cdot C_{\color{myred}\beta}+\beta_{\color{myred}1}}{\beta_{\color{myred}1}\cdot\beta_{\color{myred}2}\cdot\beta_{\color{myred}3}}
\beta_{4\;max}=\frac{3\cdot C_\beta+\beta_1}{\beta_1\cdot\beta_2\cdot\beta_3}
\require{color}\definecolor{myred}{RGB}{255,0,0} \beta_{\color{myred}ges}=\prod_{\color{myred}0}^{\color{myred}n}\beta_{\color{myred}n}
\beta_{ges}=\prod_0^n\beta_{n}
\require{color}\definecolor{myred}{RGB}{255,0,0} \beta_{\color{myred}max}=\left(\beta_{\color{myred}100}+e\right)-\frac{e\cdot d_{\color{myred}1}}{100\cdot s_{\color{myred}0}}
\beta_{max}=\left(\beta_{100}+e\right)-\frac{e\cdot d_1}{100\cdot s_0}
\require{color}\definecolor{myred}{RGB}{255,0,0} \beta_{\color{myred}n\;max}=\beta_{\color{myred}1}\cdot n^{\color{myred}-0,07\cdot\beta_{\color{myred}1}}
\beta_{n\;max}=\beta_1\cdot n^{-0,07\cdot\beta_1}
\require{color}\definecolor{myred}{RGB}{255,0,0} \beta_{\color{myred}n\;max}=\frac{C_{\color{myred}\beta}\cdot\left(n-1\right)+\beta_{\color{myred}1}}{\beta_{\color{myred}1}\cdot\beta_{\color{myred}2}\cdot...\cdot\beta_{\color{myred}n-1}}
\beta_{n\;max}=\frac{C_\beta\cdot\left(n-1\right)+\beta_1}{\beta_1\cdot\beta_2\cdot...\cdot\beta_{n-1}}
\require{color}\definecolor{myred}{RGB}{255,0,0} \beta_{\color{myred}n}~~=\frac{d_{\color{myred}n}}{d_{\color{myred}n+1}}
\beta_{n}~~=\frac{d_{n}}{d_{n+1}}
\require{color}\definecolor{myred}{RGB}{255,0,0} \Delta l=\frac\sigma E\cdot l_{\color{myred}0}
\Delta l=\frac\sigma E\cdot l_{0}
\require{color}\definecolor{myred}{RGB}{255,0,0} \Delta V=V_{\color{myred}0}\cdot\left[\left(\frac{p_{\color{myred}0}}{p_{\color{myred}1}}\right)^\frac1\kappa-\left(\frac{p_{\color{myred}0}}{p_{\color{myred}2}}\right)^\frac1\kappa\right]
\Delta V=V_0\cdot\left[\left(\frac{p_0}{p_1}\right)^\frac1\kappa-\left(\frac{p_0}{p_2}\right)^\frac1\kappa\right]
\require{color}\definecolor{myred}{RGB}{255,0,0} \Delta\approx\left(0,45\cdot\sqrt[3]D+0,001\cdot D\right)\cdot\left(\sqrt[5]{10}\right)^{\color{myred}\left(IT-6\right)}\cdot10
\Delta\approx\left(0,45\cdot\sqrt[3]D+0,001\cdot D\right)\cdot\left(\sqrt[5]{10}\right)^{\left(IT-6\right)}\cdot10
\require{color}\definecolor{myred}{RGB}{255,0,0} \eta_{\color{myred}ges}=\eta_{\color{myred}v}\cdot\eta_{\color{myred}hm}
\eta_{ges}=\eta_v\cdot\eta_{hm}
\require{color}\definecolor{myred}{RGB}{255,0,0} \lambda=\frac {4\cdot l_{\color{myred}K}}{d}
\lambda=\frac {4\cdot l_{K}}{d}
\require{color}\definecolor{myred}{RGB}{255,0,0} \lambda=\frac {l_{\color{myred}K}}{i}
\lambda=\frac {l_{K}}{i}
\require{color}\definecolor{myred}{RGB}{255,0,0} \lambda=\frac {l_{\color{myred}K}}{i}
\lambda=\frac {l_{K}}{i}
\require{color}\definecolor{myred}{RGB}{255,0,0} \lambda=\frac{4\cdot l_{\color{myred}K}}{\sqrt{D^{\color{myred}2}+d^{\color{myred}2}}}
\lambda=\frac{4\cdot l_{K}}{\sqrt{D^{2}+d^{2}}}
\require{color}\definecolor{myred}{RGB}{255,0,0} \lambda=\frac{4\cdot l_{\color{myred}K}}{\sqrt{d_{\color{myred}a}^{\color{myred}2}+d_{\color{myred}i}^{\color{myred}2}}}
\lambda=\frac{4\cdot l_{K}}{\sqrt{d_a^{2}+d_i^{2}}}
\require{color}\definecolor{myred}{RGB}{255,0,0} \sigma_{\color{myred}Z}=\frac{F_{\color{myred}ges}}{d_{\color{myred}1}\cdot\pi\cdot s_{\color{myred}0}}
\sigma_Z=\frac{F_{ges}}{d_1\cdot\pi\cdot s_0}
\require{color}\definecolor{myred}{RGB}{255,0,0} \sigma_{\color{myred}Z}=\frac{F_{\color{myred}Zg}}{b\cdot s_{\color{myred}0}}
\sigma_Z=\frac{F_{Zg}}{b\cdot s_0}
\require{color}\definecolor{myred}{RGB}{255,0,0} \sigma_{\color{myred}AB}=\frac{F_{\color{myred}AB}}{A_{\color{myred}C}}
\sigma_{AB}=\frac{F_{AB}}{A_{C}}
\require{color}\definecolor{myred}{RGB}{255,0,0} \sigma_{\color{myred}d~zul}\leq\left\{\begin{array}{l}\frac{E\cdot\pi^{\color{myred}2}}{3\cdot\lambda^{\color{myred}2}}&\mbox{if $\lambda$ $\geq $ 30}\\2620-62\cdot \lambda&\mbox{if 10 $\leq$ $\lambda$$\leq$ 30}\\2000&\mbox{if $\lambda$ $\leq $ 10}\end{array}\right.
\sigma_{d~zul}\leq\left\{\begin{array}{l}\frac{E\cdot\pi^{2}}{3\cdot\lambda^{2}}&\mbox{if $\lambda$ $\geq $ 30}\\2620-62\cdot \lambda&\mbox{if 10 $\leq$ $\lambda$$\leq$ 30}\\2000&\mbox{if $\lambda$ $\leq $ 10}\end{array}\right.
\require{color}\definecolor{myred}{RGB}{255,0,0} \sigma_{\color{myred}d~zul}\leq\left\{\begin{array}{l}\frac{E\cdot\pi^{\color{myred}2}}{5\cdot\lambda^{\color{myred}2}}&\mbox{if $\lambda$ $\geq $ 30}\\2480-68\cdot \lambda&\mbox{if 10 $\leq$ $\lambda$$\leq$ 30}\\1800&\mbox{if $\lambda$ $\leq $ 10}\end{array}\right.
\sigma_{d~zul}\leq\left\{\begin{array}{l}\frac{E\cdot\pi^{2}}{5\cdot\lambda^{2}}&\mbox{if $\lambda$ $\geq $ 30}\\2480-68\cdot \lambda&\mbox{if 10 $\leq$ $\lambda$$\leq$ 30}\\1800&\mbox{if $\lambda$ $\leq $ 10}\end{array}\right.
\require{color}\definecolor{myred}{RGB}{255,0,0} \sigma_{\color{myred}P}=\frac{F_{\color{myred}S}}{A_{\color{myred}P}}
\sigma_{P}=\frac{F_{S}}{A_{P}}
\require{color}\definecolor{myred}{RGB}{255,0,0} \sigma_{\color{myred}S}=\frac{F_{\color{myred}S}}{A_{\color{myred}S}}
\sigma_{S}=\frac{F_{S}}{A_{S}}
\require{color}\definecolor{myred}{RGB}{255,0,0} \varphi=\ln\frac{A_{\color{myred}0}}{A_{\color{myred}1}}=\ln\frac{d_{\color{myred}0}^{\color{myred}2}-d_{\color{myred}1}^{\color{myred}2}}{d_{\color{myred}2}^{\color{myred}2}-d_{\color{myred}3}^{\color{myred}2}}
\varphi=\ln\frac{A_{0}}{A_{1}}=\ln\frac{d_{0}^{2}-d_{1}^{2}}{d_{2}^{2}-d_{3}^{2}}
\require{color}\definecolor{myred}{RGB}{255,0,0} \varphi_{\color{myred}1}=\beta_{\color{myred}a}=\ln\left(\frac{d_{\color{myred}0}}{d_{\color{myred}A}}\right)
\varphi_1=\beta_a=\ln\left(\frac{d_0}{d_A}\right)
\require{color}\definecolor{myred}{RGB}{255,0,0} \varphi_{\color{myred}2}=\beta_{\color{myred}i}=\ln\left(\frac{d_{\color{myred}V}}{d_{\color{myred}1}}\right)=\ln\left(\frac{\sqrt{d_{\color{myred}0}^{\color{myred}2}-d_{\color{myred}A}^{\color{myred}2}+d_{\color{myred}1}^{\color{myred}2}}}{d_{\color{myred}1}}\right)
\varphi_2=\beta_i=\ln\left(\frac{d_V}{d_1}\right)=\ln\left(\frac{\sqrt{d_0^2-d_A^2+d_1^2}}{d_1}\right)
\require{color}\definecolor{myred}{RGB}{255,0,0} A=\frac{\ln\left(\frac{k_{\color{myred}fm}\cdot s_{\color{myred}0}\cdot\mu_{\color{myred}N}}{2\cdot p_{\color{myred}N}}+1\right)}{a\cdot\mu_{\color{myred}N}}
A=\frac{\ln\left(\frac{k_{fm}\cdot s_0\cdot\mu_N}{2\cdot p_N}+1\right)}{a\cdot\mu_N}
\require{color}\definecolor{myred}{RGB}{255,0,0} A=\frac{r^{\color{myred}2}}2\cdot\left(2\cdot\alpha-\sin\;\left(2\cdot\alpha\right)\right)
A=\frac{r^2}2\cdot\left(2\cdot\alpha-\sin\;\left(2\cdot\alpha\right)\right)
\require{color}\definecolor{myred}{RGB}{255,0,0} A_{\color{myred}D}=\frac{d_{\color{myred}K}^{\color{myred}2}\cdot\mathrm\pi}4
A_D=\frac{d_K^2\cdot\mathrm\pi}4
\require{color}\definecolor{myred}{RGB}{255,0,0} A_{\color{myred}D}=d_{\color{myred}K}^{\color{myred}2}\cdot\frac\pi4~~~~~~~A_{\color{myred}Z}=\left(d_{\color{myred}K}^{\color{myred}2}-d_{\color{myred}S}^{\color{myred}2}\right)\cdot\frac\pi4
A_D=d_K^2\cdot\frac\pi4~~~~~~~A_Z=\left(d_K^2-d_S^2\right)\cdot\frac\pi4
\require{color}\definecolor{myred}{RGB}{255,0,0} A_{\color{myred}D}=n\cdot d_{\color{myred}K}^{\color{myred}2}\cdot\frac\pi4
A_D=n\cdot d_K^2\cdot\frac\pi4
\require{color}\definecolor{myred}{RGB}{255,0,0} A_{\color{myred}D}=n\cdot d_{\color{myred}K}^{\color{myred}2}\cdot\frac\pi4
A_D=n\cdot d_{K}^2\cdot\frac\pi4
\require{color}\definecolor{myred}{RGB}{255,0,0} a_{\color{myred}R}=\frac{F_{\color{myred}BR}}{\pi\cdot\left(d_{\color{myred}1}+s_{\color{myred}0}\right)\cdot s_{\color{myred}0}\cdot R_{\color{myred}m}}
a_R=\frac{F_{BR}}{\pi\cdot\left(d_1+s_0\right)\cdot s_0\cdot R_m}
\require{color}\definecolor{myred}{RGB}{255,0,0} A_{\color{myred}S}=\left(d_{\color{myred}K}^{\color{myred}2}-d_{\color{myred}S}^{\color{myred}2}\right)\cdot\frac\pi4
A_S=\left(d_K^2-d_S^2\right)\cdot\frac\pi4
\require{color}\definecolor{myred}{RGB}{255,0,0} A_{\color{myred}S}=n\cdot\frac{\pi}4\cdot(d-P\cdot0,9382)^{\color{myred}2}
A_S=n\cdot\frac{\pi}4\cdot(d-P\cdot0,9382)^2
\require{color}\definecolor{myred}{RGB}{255,0,0} A_{\color{myred}S}\geq\frac{F_{\color{myred}SG}}{{\displaystyle\frac{R_{\color{myred}p0,2}}{2.975}}-{\displaystyle\frac{2541}{l_{\color{myred}Kl}}}}
A_S\geq\frac{F_{SG}}{{\displaystyle\frac{R_{p0,2}}{2.975}}-{\displaystyle\frac{2541}{l_{Kl}}}}
\require{color}\definecolor{myred}{RGB}{255,0,0} A_{\color{myred}Z}=\frac{\left(d_{\color{myred}K}^{\color{myred}2}-d_{\color{myred}S}^{\color{myred}2}\right)\cdot\pi}4
A_Z=\frac{\left(d_K^2-d_S^2\right)\cdot\pi}4
\require{color}\definecolor{myred}{RGB}{255,0,0} A_{\color{myred}Z}=n\cdot \left(d_{\color{myred}K}^{\color{myred}2}-d_{\color{myred}S}^{\color{myred}2}\right)\cdot\frac\pi4
A_Z=n\cdot \left(d_K^2-d_S^2\right)\cdot\frac\pi4
\require{color}\definecolor{myred}{RGB}{255,0,0} A_{\color{myred}Z}=n\cdot\left(d_{\color{myred}K}^{\color{myred}2}-d_{\color{myred}S}^{\color{myred}2}\right)\cdot\frac\pi4
A_Z=n\cdot\left(d_K^2-d_S^2\right)\cdot\frac\pi4
\require{color}\definecolor{myred}{RGB}{255,0,0} C=\frac{A_{\color{myred}L}}{r_{\color{myred}e}}<64
C=\frac{A_L}{r_e}<64
\require{color}\definecolor{myred}{RGB}{255,0,0} C=\frac{A_{\color{myred}L}}{r_{\color{myred}e}}<64
C=\frac{A_L}{r_e}<64
\require{color}\definecolor{myred}{RGB}{255,0,0} C=\sqrt{0,6+\frac{0,4\cdot d_{\color{myred}1}^{\color{myred}2}}{d_{\color{myred}0}^{\color{myred}2}}}
C=\sqrt{0,6+\frac{0,4\cdot d_1^2}{d_0^2}}
\require{color}\definecolor{myred}{RGB}{255,0,0} C=R_{\color{myred}m}\cdot\left(\frac en\right)^{\color{myred}n}=R_{\color{myred}m}\cdot\left(\frac{2,72}n\right)^{\color{myred}n}
C=R_m\cdot\left(\frac en\right)^n=R_m\cdot\left(\frac{2,72}n\right)^n
\require{color}\definecolor{myred}{RGB}{255,0,0} d_{\color{myred}A0}=\sqrt{\frac4\pi\cdot A_{\color{myred}0}}=1,13\cdot\sqrt{A_{\color{myred}0}}
d_{A0}=\sqrt{\frac4\pi\cdot A_0}=1,13\cdot\sqrt{A_0}
\require{color}\definecolor{myred}{RGB}{255,0,0} d_{\color{myred}A\;max}=C\cdot d_{\color{myred}0}
d_{A\;max}=C\cdot d_0
\require{color}\definecolor{myred}{RGB}{255,0,0} d_{\color{myred}Ap}=\sqrt{\frac4\pi\cdot A_{\color{myred}p}}=1,13\cdot\sqrt{A_{\color{myred}p}}
d_{Ap}=\sqrt{\frac4\pi\cdot A_p}=1,13\cdot\sqrt{A_p}
\require{color}\definecolor{myred}{RGB}{255,0,0} E = mc^{\color{myred}2}
E = mc^2
\require{color}\definecolor{myred}{RGB}{255,0,0} E=mc^{\color{myred}2}
E=mc^2
\require{color}\definecolor{myred}{RGB}{255,0,0} Etest = mc^{\color{myred}2}
Etest = mc^2
\require{color}\definecolor{myred}{RGB}{255,0,0} Exxxx = mc^{\color{myred}2}
Exxxx = mc^2
\require{color}\definecolor{myred}{RGB}{255,0,0} F_{\color{myred}b}=\pi\cdot d_{\color{myred}1}\cdot s_{\color{myred}0}\cdot\frac{k_{\color{myred}fi}\cdot s_{\color{myred}0}}{4\cdot r_{\color{myred}M}}
F_b=\pi\cdot d_1\cdot s_0\cdot\frac{k_{fi}\cdot s_0}{4\cdot r_M}
\require{color}\definecolor{myred}{RGB}{255,0,0} F_{\color{myred}D}=n\cdot p\cdot\eta_{\color{myred}K}\cdot A_{\color{myred}D}
F_D=n\cdot p\cdot\eta_K\cdot A_D
\require{color}\definecolor{myred}{RGB}{255,0,0} F_{\color{myred}D}=p\cdot\eta_{\color{myred}K}\cdot A_{\color{myred}D}
F_D=p\cdot\eta_K\cdot A_D
\require{color}\definecolor{myred}{RGB}{255,0,0} F_{\color{myred}N}=\frac\pi4\cdot\left[d_{\color{myred}0}^{\color{myred}2}-\left(d_{\color{myred}1}+2\cdot r_{\color{myred}M}+2\cdot u_{\color{myred}z}\right)^{\color{myred}2}\right]\cdot P_{\color{myred}n}
F_N=\frac\pi4\cdot\left[d_0^2-\left(d_1+2\cdot r_M+2\cdot u_z\right)^2\right]\cdot P_n
\require{color}\definecolor{myred}{RGB}{255,0,0} F_{\color{myred}U}=n\cdot\Delta\sigma\cdot s_{\color{myred}0}
F_U=n\cdot\Delta\sigma\cdot s_0
\require{color}\definecolor{myred}{RGB}{255,0,0} F_{\color{myred}Z}=n\cdot p\cdot\eta_{\color{myred}K}\cdot A_{\color{myred}Z}
F_Z=n\cdot p\cdot\eta_K\cdot A_Z
\require{color}\definecolor{myred}{RGB}{255,0,0} F_{\color{myred}Z}=p\cdot\eta_{\color{myred}K}\cdot A_{\color{myred}Z}
F_Z=p\cdot\eta_K\cdot A_Z
\require{color}\definecolor{myred}{RGB}{255,0,0} F_{\color{myred}ab}=0,25\cdot F_{\color{myred}St}
F_{ab}=0,25\cdot F_{St}
\require{color}\definecolor{myred}{RGB}{255,0,0} F_{\color{myred}ab}=\sigma_{\color{myred}H}\cdot A_{\color{myred}p}
F_{ab}=\sigma_{H}\cdot A_{p}
\require{color}\definecolor{myred}{RGB}{255,0,0} F_{\color{myred}BR}=\pi\cdot\left(d_{\color{myred}1}+s_{\color{myred}0}\right)\cdot s_{\color{myred}0}\cdot R_{\color{myred}m}\cdot a_{\color{myred}R}
F_{BR}=\pi\cdot\left(d_1+s_0\right)\cdot s_0\cdot R_m\cdot a_R
\require{color}\definecolor{myred}{RGB}{255,0,0} F_{\color{myred}ges}=F_{\color{myred}id}+F_{\color{myred}b}+F_{\color{myred}R\;B/N}+F_{\color{myred}R\;B/Z}+F_{\color{myred}R\;B/ZR}
F_{ges}=F_{id}+F_{b}+F_{R\;B/N}+F_{R\;B/Z}+F_{R\;B/ZR}
\require{color}\definecolor{myred}{RGB}{255,0,0} F_{\color{myred}H}=l_{\color{myred}St}\cdot s_{\color{myred}t}\cdot R_{\color{myred}M~max}\cdot \sin \alpha
F_{H}=l_{St}\cdot s_{t}\cdot R_{M~max}\cdot \sin \alpha
\require{color}\definecolor{myred}{RGB}{255,0,0} F_{\color{myred}H~e}=25\%\cdot F_{\color{myred}H}
F_{H~e}=25\%\cdot F_{H}
\require{color}\definecolor{myred}{RGB}{255,0,0} F_{\color{myred}id}=d_{\color{myred}1}\cdot\pi\cdot s_{\color{myred}0}\cdot k_{\color{myred}fm}\cdot\ln\left(\frac{d_{\color{myred}A}}{d_{\color{myred}1}}\right)
F_{id}=d_1\cdot\pi\cdot s_0\cdot k_{fm}\cdot\ln\left(\frac{d_A}{d_1}\right)
\require{color}\definecolor{myred}{RGB}{255,0,0} F_{\color{myred}K}=l_{\color{myred}St}\cdot s_{\color{myred}0}\cdot R_{\color{myred}M~max}\cdot K
F_{K}=l_{St}\cdot s_{0}\cdot R_{M~max}\cdot K
\require{color}\definecolor{myred}{RGB}{255,0,0} F_{\color{myred}K~e}=30\%\cdot F_{\color{myred}K}
F_{K~e}=30\%\cdot F_{K}
\require{color}\definecolor{myred}{RGB}{255,0,0} F_{\color{myred}max}\approx F_{\color{myred}ges}\left(d_{\color{myred}A}\approx0,77\cdot D_{\color{myred}0};k_{\color{myred}fm}\approx1,3\cdot R_{\color{myred}m}\right)
F_{max}\approx F_{ges}\left(d_A\approx0,77\cdot D_0;k_{fm}\approx1,3\cdot R_m\right)
\require{color}\definecolor{myred}{RGB}{255,0,0} F_{\color{myred}N}=\frac{\pi}4\cdot\left[D_{\color{myred}0}^{\color{myred}2}-\left(d_{\color{myred}1}+2\cdot r_{\color{myred}M}+2\cdot u_{\color{myred}z}\right)^{\color{myred}2}\right]\cdot P_{\color{myred}N}
F_{N}=\frac{\pi}4\cdot\left[D_{0}^2-\left(d_{1}+2\cdot r_{M}+2\cdot u_{z}\right)^{2}\right]\cdot P_{N}
\require{color}\definecolor{myred}{RGB}{255,0,0} F_{\color{myred}R\;B/N}=\mu_{\color{myred}1}\cdot\frac\pi4\cdot\left(d_{\color{myred}A}^{\color{myred}2}-d_{\color{myred}1}^{\color{myred}2}\right)\cdot p_{\color{myred}N}
F_{R\;B/N}=\mu_1\cdot\frac\pi4\cdot\left(d_A^2-d_1^2\right)\cdot p_N
\require{color}\definecolor{myred}{RGB}{255,0,0} F_{\color{myred}R\;B/ZR}=\left(e^{\color{myred}\mu_{\color{myred}3}\cdot\frac\pi2}-1\right)\cdot\left(F_{\color{myred}id}+F_{\color{myred}R\;B/N}+F_{\color{myred}R\;B/Z}\right)
F_{R\;B/ZR}=\left(e^{\mu_3\cdot\frac\pi2}-1\right)\cdot\left(F_{id}+F_{R\;B/N}+F_{R\;B/Z}\right)
\require{color}\definecolor{myred}{RGB}{255,0,0} F_{\color{myred}R\;B/Z}=\mu_{\color{myred}2}\cdot\frac\pi4\cdot\left(d_{\color{myred}A}^{\color{myred}2}-d_{\color{myred}1}^{\color{myred}2}\right)\cdot p_{\color{myred}N}
F_{R\;B/Z}=\mu_2\cdot\frac\pi4\cdot\left(d_A^2-d_1^2\right)\cdot p_N
\require{color}\definecolor{myred}{RGB}{255,0,0} F_{\color{myred}S g}=0,8^{\color{myred}2}\cdot l_{\color{myred}S}\cdot s_{\color{myred}0}\cdot R_{\color{myred}m}
F_{S g}=0,8^{2}\cdot l_S\cdot s_{0}\cdot R_{m}
\require{color}\definecolor{myred}{RGB}{255,0,0} F_{\color{myred}St}=l_{\color{myred}U}\cdot s_{\color{myred}min}\cdot k_{\color{myred}fm}\cdot sin\;\alpha\approx l_{\color{myred}U}\cdot s_{\color{myred}0}\cdot R_{\color{myred}m}\cdot sin\;\alpha
F_{St}=l_U\cdot s_{min}\cdot k_{fm}\cdot sin\;\alpha\approx l_U\cdot s_0\cdot R_m\cdot sin\;\alpha
\require{color}\definecolor{myred}{RGB}{255,0,0} F_{\color{myred}S}\approx 0,8\cdot l_{\color{myred}S}\cdot s_{\color{myred}0}\cdot R_{\color{myred}m}
F_{S}\approx 0,8\cdot l_S\cdot s_{0}\cdot R_{m}
\require{color}\definecolor{myred}{RGB}{255,0,0} F_{\color{myred}zb}=\pi\cdot d_{\color{myred}1}\cdot s_{\color{myred}0}\cdot\frac{k_{\color{myred}fm}}{1000}
F_{zb}=\pi\cdot d_1\cdot s_0\cdot\frac{k_{fm}}{1000}
\require{color}\definecolor{myred}{RGB}{255,0,0} F_{\color{myred}ZB}=\pi\cdot d_{\color{myred}1}\cdot s\cdot\frac{k_{\color{myred}fm}}{1000}
F_{ZB}=\pi\cdot d_{1}\cdot s\cdot\frac{k_{fm}}{1000}
\require{color}\definecolor{myred}{RGB}{255,0,0} F_{\color{myred}Zg}=\mu_{\color{myred}N}\cdot F_{\color{myred}N}\cdot\left(1+e^{\color{myred}\mu_{\color{myred}Z}\cdot\frac\pi2}\right)+0,91\cdot R_{\color{myred}m}\cdot\frac{b\cdot s_{\color{myred}0}}{\frac{r_{\color{myred}M}+r_{\color{myred}St}}{s_{\color{myred}0}}+1}
F_{Zg}=\mu_N\cdot F_N\cdot\left(1+e^{\mu_Z\cdot\frac\pi2}\right)+0,91\cdot R_m\cdot\frac{b\cdot s_0}{\frac{r_M+r_{St}}{s_0}+1}
\require{color}\definecolor{myred}{RGB}{255,0,0} F_{\color{myred}ZW}=0,5\cdot F_{\color{myred}Z}+5\cdot d_{\color{myred}2}\cdot s_{\color{myred}0}\cdot k_{\color{myred}fm}\cdot ln(\beta_{\color{myred}1})
F_{ZW}=0,5\cdot F_{Z}+5\cdot d_{2}\cdot s_{0}\cdot k_{fm}\cdot ln(\beta_{1})
\require{color}\definecolor{myred}{RGB}{255,0,0} F_{\color{myred}z}~~=\pi\cdot d_{\color{myred}1}\cdot s_{\color{myred}0}\cdot\frac{k_{\color{myred}fm}}{1000}\cdot\frac {ln(\beta_{\color{myred}0})}{0,65}
F_{z}~~=\pi\cdot d_{1}\cdot s_0\cdot\frac{k_{fm}}{1000}\cdot\frac {ln(\beta_{0})}{0,65}
\require{color}\definecolor{myred}{RGB}{255,0,0} G=\frac1{2\cdot\left(1+v\right)}\cdot E
G=\frac1{2\cdot\left(1+v\right)}\cdot E
\require{color}\definecolor{myred}{RGB}{255,0,0} i=\frac d4
i=\frac d4
\require{color}\definecolor{myred}{RGB}{255,0,0} I_{\color{myred}\eta}=\frac{I_{\color{myred}y}+I_{\color{myred}z}}2+\frac{I_{\color{myred}y}-I_{\color{myred}z}}2\cdot\cos\left(2\cdot\varphi\right)-I_{\color{myred}yz}\cdot\sin\left(2\cdot\varphi\right)
I_\eta=\frac{I_y+I_z}2+\frac{I_y-I_z}2\cdot\cos\left(2\cdot\varphi\right)-I_{yz}\cdot\sin\left(2\cdot\varphi\right)
\require{color}\definecolor{myred}{RGB}{255,0,0} I_{\color{myred}\zeta}=\frac{I_{\color{myred}y}+I_{\color{myred}z}}2-\frac{I_{\color{myred}y}-I_{\color{myred}z}}2\cdot\cos\left(2\cdot\varphi\right)+I_{\color{myred}yz}\cdot\sin\left(2\cdot\varphi\right)
I_\zeta=\frac{I_y+I_z}2-\frac{I_y-I_z}2\cdot\cos\left(2\cdot\varphi\right)+I_{yz}\cdot\sin\left(2\cdot\varphi\right)
\require{color}\definecolor{myred}{RGB}{255,0,0} I_{\color{myred}x}=\frac{h_{\color{myred}a}^{\color{myred}3}}{36}\cdot\left(a_{\color{myred}1}+a_{\color{myred}2}\right)
I_x=\frac{h_a^3}{36}\cdot\left(a_1+a_2\right)
\require{color}\definecolor{myred}{RGB}{255,0,0} I_{\color{myred}y}=\frac{h_{\color{myred}a}}{36}\cdot\left(a_{\color{myred}2}^{\color{myred}3}+2\cdot a_{\color{myred}1}^{\color{myred}2}\cdot a_{\color{myred}2}+a_{\color{myred}1}^{\color{myred}3}+2\cdot a_{\color{myred}2}^{\color{myred}2}\cdot a_{\color{myred}1}\right)
I_y=\frac{h_a}{36}\cdot\left(a_2^3+2\cdot a_1^2\cdot a_2+a_1^3+2\cdot a_2^2\cdot a_1\right)
\require{color}\definecolor{myred}{RGB}{255,0,0} I_{\color{myred}y}=\frac{r^{\color{myred}4}}4\cdot\left(\alpha-\frac23\cdot\sin\left(2\cdot\alpha\right)+\frac1{12}\cdot\sin\left(4\cdot\alpha\right)\right)
I_y=\frac{r^4}4\cdot\left(\alpha-\frac23\cdot\sin\left(2\cdot\alpha\right)+\frac1{12}\cdot\sin\left(4\cdot\alpha\right)\right)
\require{color}\definecolor{myred}{RGB}{255,0,0} I_{\color{myred}\eta\zeta}=\frac{I_{\color{myred}y}-I_{\color{myred}z}}2\cdot\sin\left(2\cdot\varphi\right)+I_{\color{myred}yz}\cdot\cos\left(2\cdot\varphi\right)
I_{\eta\zeta}=\frac{I_y-I_z}2\cdot\sin\left(2\cdot\varphi\right)+I_{yz}\cdot\cos\left(2\cdot\varphi\right)
\require{color}\definecolor{myred}{RGB}{255,0,0} i_{\color{myred}min}=\sqrt{\frac{I_{\color{myred}min}}A}
i_{min}=\sqrt{\frac{I_{min}}A}
\require{color}\definecolor{myred}{RGB}{255,0,0} I_{\color{myred}xy}=0
I_{xy}=0
\require{color}\definecolor{myred}{RGB}{255,0,0} I_{\color{myred}xy}=\frac{h_{\color{myred}a}^{\color{myred}2}}{72}\cdot\left(a_{\color{myred}2}^{\color{myred}2}-a_{\color{myred}1}^{\color{myred}2}\right)
I_{xy}=\frac{h_a^2}{72}\cdot\left(a_2^2-a_1^2\right)
\require{color}\definecolor{myred}{RGB}{255,0,0} I_{\color{myred}x}=\frac{r^{\color{myred}4}}{144}\cdot\left(36\cdot\alpha-9\cdot\sin\left(4\cdot\alpha\right)-\frac{128\cdot\sin^{\color{myred}6}\left(\alpha\right)}{2\cdot\alpha-\sin\left(2\cdot\alpha\right)}\right)
I_{x}=\frac{r^4}{144}\cdot\left(36\cdot\alpha-9\cdot\sin\left(4\cdot\alpha\right)-\frac{128\cdot\sin^6\left(\alpha\right)}{2\cdot\alpha-\sin\left(2\cdot\alpha\right)}\right)
\require{color}\definecolor{myred}{RGB}{255,0,0} K_{\color{myred}e}=\left(F_{\color{myred}Zmax}\cdot h_{\color{myred}z}\cdot m_{\color{myred}u}+F_{\color{myred}nh}\cdot h_{\color{myred}nh}\cdot m_{\color{myred}nh}\right)\cdot\;K_{\color{myred}I}\cdot M\cdot\frac1{3600\cdot\eta_{\color{myred}ges}}
K_e=\left(F_{Zmax}\cdot h_z\cdot m_u+F_{nh}\cdot h_{nh}\cdot m_{nh}\right)\cdot\;K_I\cdot M\cdot\frac1{3600\cdot\eta_{ges}}
\require{color}\definecolor{myred}{RGB}{255,0,0} K_{\color{myred}e}=m_{\color{myred}Z}\cdot M\cdot w_{\color{myred}e}\cdot K_{\color{myred}I}
K_e=m_Z\cdot M\cdot w_e\cdot K_I
\require{color}\definecolor{myred}{RGB}{255,0,0} k_{\color{myred}f}=260\cdot\varphi^{\color{myred}0,1975}
k_f=260\cdot\varphi^{0,1975}
\require{color}\definecolor{myred}{RGB}{255,0,0} k_{\color{myred}f}=356\cdot\varphi^{\color{myred}0,19}
k_f=356\cdot\varphi^{0,19}
\require{color}\definecolor{myred}{RGB}{255,0,0} k_{\color{myred}f}=452\cdot\left(0,003+\varphi\right)^{\color{myred}0,252}
k_f=452\cdot\left(0,003+\varphi\right)^{0,252}
\require{color}\definecolor{myred}{RGB}{255,0,0} k_{\color{myred}f}=502\cdot\varphi^{\color{myred}0,18}
k_f=502\cdot\varphi^{0,18}
\require{color}\definecolor{myred}{RGB}{255,0,0} k_{\color{myred}f}=\left\{\begin{array}{lc}1480\cdot\left(0,08+\varphi\right)^{\color{myred}0,447}&if\;\varphi\;<0,4\\1045&else\end{array}\right.
k_f=\left\{\begin{array}{lc}1480\cdot\left(0,08+\varphi\right)^{0,447}&if\;\varphi\;<0,4\\1045&else\end{array}\right.
\require{color}\definecolor{myred}{RGB}{255,0,0} k_{\color{myred}f}=C\cdot\left(\varphi_{\color{myred}0}+\varphi\right)^{\color{myred}n}
k_f=C\cdot\left(\varphi_0+\varphi\right)^n
\require{color}\definecolor{myred}{RGB}{255,0,0} k_{\color{myred}f}=C\cdot\left(\varphi_{\color{myred}0}+\varphi\right)^{\color{myred}n}
k_f=C\cdot\left(\varphi_0+\varphi\right)^n
\require{color}\definecolor{myred}{RGB}{255,0,0} k_{\color{myred}f}=C\cdot\varphi^{\color{myred}n}
k_f=C\cdot\varphi^n
\require{color}\definecolor{myred}{RGB}{255,0,0} k_{\color{myred}fm}=130\cdot\left(\varphi_{\color{myred}1}^{\color{myred}0,1975}+\varphi_{\color{myred}2}^{\color{myred}0,1975}\right)
k_{fm}=130\cdot\left(\varphi_1^{0,1975}+\varphi_2^{0,1975}\right)
\require{color}\definecolor{myred}{RGB}{255,0,0} k_{\color{myred}fm}=178\cdot\left(\varphi_{\color{myred}1}^{\color{myred}0,19}+\varphi_{\color{myred}2}^{\color{myred}0,19}\right)
k_{fm}=178\cdot\left(\varphi_1^{0,19}+\varphi_2^{0,19}\right)
\require{color}\definecolor{myred}{RGB}{255,0,0} k_{\color{myred}fm}=226\cdot\left(\left(0,003+\varphi_{\color{myred}1}\right)^{\color{myred}0,252}+\left(0,003+\varphi_{\color{myred}2}\right)^{\color{myred}0,252}\right)
k_{fm}=226\cdot\left(\left(0,003+\varphi_1\right)^{0,252}+\left(0,003+\varphi_2\right)^{0,252}\right)
\require{color}\definecolor{myred}{RGB}{255,0,0} k_{\color{myred}fm}=251\cdot\left(\varphi_{\color{myred}1}^{\color{myred}0,18}+\varphi_{\color{myred}2}^{\color{myred}0,18}\right)
k_{fm}=251\cdot\left(\varphi_1^{0,18}+\varphi_2^{0,18}\right)
\require{color}\definecolor{myred}{RGB}{255,0,0} k_{\color{myred}fm}=\frac{k_{\color{myred}f1}+k_{\color{myred}f2}}2
k_{fm}=\frac{k_{f1}+k_{f2}}2
\require{color}\definecolor{myred}{RGB}{255,0,0} k_{\color{myred}fm}\approx1,3\cdot R_{\color{myred}m}
k_{fm}\approx1,3\cdot R_m
\require{color}\definecolor{myred}{RGB}{255,0,0} k_{\color{myred}f}=C\cdot\varphi^{\color{myred}n}
k_{f}=C\cdot\varphi^{n}
\require{color}\definecolor{myred}{RGB}{255,0,0} n=\frac{\ln\left(\beta_{\color{myred}ges}\right)-ln\left(\beta_{\color{myred}1}\right)}{\ln\left(\beta_{\color{myred}n}\right)}
n=\frac{\ln\left(\beta_{ges}\right)-ln\left(\beta_1\right)}{\ln\left(\beta_n\right)}
\require{color}\definecolor{myred}{RGB}{255,0,0} n=\ln\left(1+\varepsilon_{\color{myred}gl}\right)
n=\ln\left(1+\varepsilon_{gl}\right)
\require{color}\definecolor{myred}{RGB}{255,0,0} n\approx\varphi_{\color{myred}gl}=\ln\left(1+\varepsilon_{\color{myred}gl}\right)
n\approx\varphi_{gl}=\ln\left(1+\varepsilon_{gl}\right)
\require{color}\definecolor{myred}{RGB}{255,0,0} n\approx\varphi_{\color{myred}gl}=ln(1+A_{\color{myred}gl})
n\approx\varphi_{gl}=ln(1+A_{gl})
\require{color}\definecolor{myred}{RGB}{255,0,0} n_{\color{myred}B}=\frac{T_{\color{myred}bB}}{T_{\color{myred}pB}}
n_B=\frac{T_{bB}}{T_{pB}}
\require{color}\definecolor{myred}{RGB}{255,0,0} N_{\color{myred}G}=\frac{T_{\color{myred}B}-T_{\color{myred}O}-T_{\color{myred}T}-T_{\color{myred}W}}{T_{\color{myred}B}}\cdot100\%
N_G=\frac{T_B-T_O-T_T-T_W}{T_B}\cdot100\%
\require{color}\definecolor{myred}{RGB}{255,0,0} N_{\color{myred}G}=\frac{T_{\color{myred}N}}{T_{\color{myred}B}}=\frac{T_{\color{myred}B}-T_{\color{myred}O}-T_{\color{myred}T}-T_{\color{myred}W}}{T_{\color{myred}B}}\cdot100\%
N_G=\frac{T_N}{T_B}=\frac{T_B-T_O-T_T-T_W}{T_B}\cdot100\%
\require{color}\definecolor{myred}{RGB}{255,0,0} n_{\color{myred}R}=\frac{n_{\color{myred}A}}{n_{\color{myred}wT}}
n_R=\frac{n_A}{n_{wT}}
\require{color}\definecolor{myred}{RGB}{255,0,0} n_{\color{myred}res}=\frac{T_{\color{myred}pB}-T_{\color{myred}bP}}{\frac1M+\frac{t_{\color{myred}rB}}{L}}
n_{res}=\frac{T_{pB}-T_{bP}}{\frac1M+\frac{t_{rB}}{L}}
\require{color}\definecolor{myred}{RGB}{255,0,0} P=\frac{Q_{\color{myred}Pth}\cdot p}{600\cdot\eta_{\color{myred}ges}}
P=\frac{Q_{Pth}\cdot p}{600\cdot\eta_{ges}}
\require{color}\definecolor{myred}{RGB}{255,0,0} P=\frac{Q_{\color{myred}Pth}\cdot p}{600\cdot\eta_{\color{myred}ges}}
P=\frac{Q_{Pth}\cdot p}{600\cdot\eta_{ges}}
\require{color}\definecolor{myred}{RGB}{255,0,0} p_{\color{myred}2}=\frac{p_{\color{myred}0}}{\left[\left(\frac{p_{\color{myred}0}}{p_{\color{myred}1}}\right)^\frac1\kappa-\frac{\Delta V}{V_{\color{myred}0}}\right]^\kappa}
p_2=\frac{p_0}{\left[\left(\frac{p_0}{p_1}\right)^\frac1\kappa-\frac{\Delta V}{V_0}\right]^\kappa}
\require{color}\definecolor{myred}{RGB}{255,0,0} p_{\color{myred}2}=\frac{p_{\color{myred}1}}{\left[1-\frac{\Delta V}{V_{\color{myred}0}\cdot\left(\frac{p_{\color{myred}0}}{p_{\color{myred}1}}\right)^\frac1\kappa}\right]}
p_2=\frac{p_1}{\left[1-\frac{\Delta V}{V_0\cdot\left(\frac{p_0}{p_1}\right)^\frac1\kappa}\right]}
\require{color}\definecolor{myred}{RGB}{255,0,0} P_{\color{myred}n}=\left[\left(\beta_{\color{myred}0}-1\right)^{\color{myred}2}+\frac{d_{\color{myred}1}}{200\cdot s_{\color{myred}0}}\right]\cdot\frac{R_{\color{myred}m}}{400}
P_{n}=\left[\left(\beta_{0}-1\right)^{2}+\frac{d_{1}}{200\cdot s_{0}}\right]\cdot\frac{R_{m}}{400}
\require{color}\definecolor{myred}{RGB}{255,0,0} q_{\color{myred}D}=\frac{V_{\color{myred}D}}{T_{\color{myred}D}}
q_D=\frac{V_D}{T_D}
\require{color}\definecolor{myred}{RGB}{255,0,0} q_{\color{myred}D}=n\cdot \frac{V_{\color{myred}D}}{T_{\color{myred}D}}~~~~q_{\color{myred}Z}=n\cdot \frac{V_{\color{myred}Z}}{T_{\color{myred}Z}}
q_D=n\cdot \frac{V_D}{T_D}~~~~q_Z=n\cdot \frac{V_Z}{T_Z}
\require{color}\definecolor{myred}{RGB}{255,0,0} q_{\color{myred}Z}=\frac{V_{\color{myred}Z}}{T_{\color{myred}Z}}
q_Z=\frac{V_Z}{T_Z}
\require{color}\definecolor{myred}{RGB}{255,0,0} Q_{\color{myred}Pth}=\frac{600\cdot P\cdot\eta_{\color{myred}ges}}p
Q_{Pth}=\frac{600\cdot P\cdot\eta_{ges}}p
\require{color}\definecolor{myred}{RGB}{255,0,0} r _{\color{myred}M~max}\leq16\cdot s _{\color{myred}0}
r _{M~max}\leq16\cdot s _{0}
\require{color}\definecolor{myred}{RGB}{255,0,0} R=\frac{\varphi_{\color{myred}b}}{\left|\varphi_{\color{myred}l}\right|+\left|\varphi_{\color{myred}b}\right|}=\frac{\varphi_{\color{myred}b}}{\varphi_{\color{myred}s}}
R=\frac{\varphi_b}{\left|\varphi_l\right|+\left|\varphi_b\right|}=\frac{\varphi_b}{\varphi_s}
\require{color}\definecolor{myred}{RGB}{255,0,0} r_{\color{myred}M}=0,035\cdot\left[50+\left(D_{\color{myred}0}-d_{\color{myred}0}\right)\right]\cdot\sqrt{s_{\color{myred}0}}
r_M=0,035\cdot\left[50+\left(D_0-d_0\right)\right]\cdot\sqrt{s_0}
\require{color}\definecolor{myred}{RGB}{255,0,0} r_{\color{myred}M}=\frac{0,04\cdot D_{\color{myred}0}}{d_{\color{myred}1}\cdot\beta_{\color{myred}100}}\cdot\left[50+\left(D_{\color{myred}0}-d_{\color{myred}1}\right)\right]\cdot\sqrt{s_{\color{myred}0}}
r_M=\frac{0,04\cdot D_0}{d_1\cdot\beta_{100}}\cdot\left[50+\left(D_0-d_1\right)\right]\cdot\sqrt{s_0}
\require{color}\definecolor{myred}{RGB}{255,0,0} r_{\color{myred}M}=\left(0,5 … 0,8\right)\cdot\sqrt{\left(D_{\color{myred}0}-d_{\color{myred}1}\right)\cdot s_{\color{myred}0}}=C\cdot\sqrt{\left(D_{\color{myred}0}-d_{\color{myred}1}\right)\cdot s_{\color{myred}0}}
r_M=\left(0,5 … 0,8\right)\cdot\sqrt{\left(D_0-d_1\right)\cdot s_0}=C\cdot\sqrt{\left(D_0-d_1\right)\cdot s_0}
\require{color}\definecolor{myred}{RGB}{255,0,0} r_{\color{myred}M}=\left(5 … 15\right)\cdot s_{\color{myred}0}=C\cdot s_{\color{myred}0}
r_M=\left(5 … 15\right)\cdot s_0=C\cdot s_0
\require{color}\definecolor{myred}{RGB}{255,0,0} r_{\color{myred}M~max}\leq16\cdot s_{\color{myred}0}
r_{M~max}\leq16\cdot s_{0}
\require{color}\definecolor{myred}{RGB}{255,0,0} r_{\color{myred}M~n}=\left(0,6 … 0,8\right)\cdot r_{\color{myred}Mn-1}=C\cdot r_{\color{myred}M~n-1}
r_{M~n}=\left(0,6 … 0,8\right)\cdot r_{Mn-1}=C\cdot r_{M~n-1}
\require{color}\definecolor{myred}{RGB}{255,0,0} r_{\color{myred}M~opt}=(0,125-0,78\cdot \mu)\cdot R_{\color{myred}P~0,2}\cdot s_{\color{myred}0} {^{\color{myred}2}}
r_{M~opt}=(0,125-0,78\cdot \mu)\cdot R_{P~0,2}\cdot s_{0} {^{2}}
\require{color}\definecolor{myred}{RGB}{255,0,0} r_{\color{myred}St}=\frac{d_{\color{myred}St}}3
r_{St}=\frac{d_{St}}3
\require{color}\definecolor{myred}{RGB}{255,0,0} r_{\color{myred}St}=\frac{d_{\color{myred}St}}{5 … 10}=\frac{d_{\color{myred}St}}C
r_{St}=\frac{d_{St}}{5 … 10}=\frac{d_{St}}C
\require{color}\definecolor{myred}{RGB}{255,0,0} r_{\color{myred}St}\geq\left(4 … 5\right)\cdot s_{\color{myred}0}
r_{St}\geq\left(4 … 5\right)\cdot s_{0}
\require{color}\definecolor{myred}{RGB}{255,0,0} s_{\color{myred}0}>0,011\cdot d_{\color{myred}n}\cdot\beta_{\color{myred}n}
s_0>0,011\cdot d_n\cdot\beta_n
\require{color}\definecolor{myred}{RGB}{255,0,0} s_{\color{myred}max}=s_{\color{myred}0}\cdot\sqrt{\beta_{\color{myred}0}}
s_{max}=s_0\cdot\sqrt{\beta_0}
\require{color}\definecolor{myred}{RGB}{255,0,0} T=1-\frac{F_{\color{myred}Z\;max}}{F_{\color{myred}BR}}
T=1-\frac{F_{Z\;max}}{F_{BR}}
\require{color}\definecolor{myred}{RGB}{255,0,0} T_{\color{myred}bB}=\frac{n_{\color{myred}A}}{L}\cdot t_{\color{myred}rB}+n_{\color{myred}A}\cdot\frac1M
T_{bB}=\frac{n_A}{L}\cdot t_{rB}+n_A\cdot\frac1M
\require{color}\definecolor{myred}{RGB}{255,0,0} t_{\color{myred}eB}=\frac1M
t_{eB}=\frac1M
\require{color}\definecolor{myred}{RGB}{255,0,0} T_{\color{myred}pB}=n_{\color{myred}S}\cdot N_{\color{myred}G}\cdot n_{\color{myred}AT}\cdot AZ
T_{pB}=n_S\cdot N_G\cdot n_{AT}\cdot AZ
\require{color}\definecolor{myred}{RGB}{255,0,0} u_{\color{myred}Z}=\left(1,3...1,5\right)\cdot s_{\color{myred}0}
u_Z=\left(1,3...1,5\right)\cdot s_0
\require{color}\definecolor{myred}{RGB}{255,0,0} u_{\color{myred}Z}=s_{\color{myred}0}\cdot\left[1+0,035\cdot\left(\beta_{\color{myred}100}-1\right)\right]^{\color{myred}2}
u_Z=s_0\cdot\left[1+0,035\cdot\left(\beta_{100}-1\right)\right]^2
\require{color}\definecolor{myred}{RGB}{255,0,0} u_{\color{myred}S}=\frac{1}{150}\cdot s_{\color{myred}0}\cdot\sqrt{\frac{0,8\cdot R_{\color{myred}m}}{10}}
u_{S}=\frac{1}{150}\cdot s_{0}\cdot\sqrt{\frac{0,8\cdot R_{m}}{10}}
\require{color}\definecolor{myred}{RGB}{255,0,0} u_{\color{myred}S}=\frac{1}{200}\cdot s_{\color{myred}0}\cdot\sqrt{\frac{0,8\cdot R_{\color{myred}m}}{10}}
u_{S}=\frac{1}{200}\cdot s_{0}\cdot\sqrt{\frac{0,8\cdot R_{m}}{10}}
\require{color}\definecolor{myred}{RGB}{255,0,0} u_{\color{myred}S}=\frac{1}{240}\cdot s_{\color{myred}0}\cdot\sqrt{\frac{0,8\cdot R_{\color{myred}m}}{10}}
u_{S}=\frac{1}{240}\cdot s_{0}\cdot\sqrt{\frac{0,8\cdot R_{m}}{10}}
\require{color}\definecolor{myred}{RGB}{255,0,0} u_{\color{myred}S}=\frac{1}{320}\cdot s_{\color{myred}0}\cdot\sqrt{\frac{0,8\cdot R_{\color{myred}m}}{10}}
u_{S}=\frac{1}{320}\cdot s_{0}\cdot\sqrt{\frac{0,8\cdot R_{m}}{10}}
\require{color}\definecolor{myred}{RGB}{255,0,0} u_{\color{myred}Z\;1}\approx s_{\color{myred}0}+0,05\cdot\sqrt{s_{\color{myred}0}}
u_{Z\;1}\approx s_{0}+0,05\cdot\sqrt{s_{0}}
\require{color}\definecolor{myred}{RGB}{255,0,0} u_{\color{myred}Z\;1}\approx s_{\color{myred}0}+0,1\cdot\sqrt{s_{\color{myred}0}}
u_{Z\;1}\approx s_{0}+0,1\cdot\sqrt{s_{0}}
\require{color}\definecolor{myred}{RGB}{255,0,0} u_{\color{myred}Z\;1}\approx s_{\color{myred}0}+0,2\cdot\sqrt{s_{\color{myred}0}}
u_{Z\;1}\approx s_{0}+0,2\cdot\sqrt{s_{0}}
\require{color}\definecolor{myred}{RGB}{255,0,0} u_{\color{myred}Z\;1}\geq1.2\cdot s_{\color{myred}0}
u_{Z\;1}\geq1.2\cdot s_{0}
\require{color}\definecolor{myred}{RGB}{255,0,0} u_{\color{myred}Z\;2}\approx s_{\color{myred}0}
u_{Z\;2}\approx s_{0}
\require{color}\definecolor{myred}{RGB}{255,0,0} u_{\color{myred}Z\;2}\approx 1,08\cdot s_{\color{myred}0}
u_{Z\;2}\approx 1,08\cdot s_{0}
\require{color}\definecolor{myred}{RGB}{255,0,0} u_{\color{myred}Z\;2}\approx s_{\color{myred}0}
u_{Z\;2}\approx s_{0}
\require{color}\definecolor{myred}{RGB}{255,0,0} u_{\color{myred}Z\;2}\geq1.25\cdot s_{\color{myred}0}
u_{Z\;2}\geq1.25\cdot s_{0}
\require{color}\definecolor{myred}{RGB}{255,0,0} u_{\color{myred}Zmax}\leq s_{\color{myred}0}\cdot\sqrt{\beta_{\color{myred}0}}
u_{Zmax}\leq s_0\cdot\sqrt{\beta_0}
\require{color}\definecolor{myred}{RGB}{255,0,0} u_{\color{myred}Z}=s_{\color{myred}0}\cdot\left[1+0.001\cdot R_{\color{myred}m}\cdot\left(\beta_{\color{myred}100}-1\right)\right]^{\color{myred}2}
u_{Z}=s_{0}\cdot\left[1+0.001\cdot R_{m}\cdot\left(\beta_{100}-1\right)\right]^2
\require{color}\definecolor{myred}{RGB}{255,0,0} V_{\color{myred}0}=\frac{\Delta V}{\left[\left(\frac{p_{\color{myred}0}}{p_{\color{myred}1}}\right)^\frac1\kappa-\left(\frac{p_{\color{myred}0}}{p_{\color{myred}2}}\right)^\frac1\kappa\right]}
V_0=\frac{\Delta V}{\left[\left(\frac{p_0}{p_1}\right)^\frac1\kappa-\left(\frac{p_0}{p_2}\right)^\frac1\kappa\right]}
\require{color}\definecolor{myred}{RGB}{255,0,0} V_{\color{myred}0}=\frac{p_{\color{myred}1}}{\left(\frac{p_{\color{myred}0}}{p_{\color{myred}1}}\right)^\frac1\kappa\cdot\left[1-\left(\frac{p_{\color{myred}1}}{p_{\color{myred}2}}\right)^\frac1\kappa\right]}
V_0=\frac{p_1}{\left(\frac{p_0}{p_1}\right)^\frac1\kappa\cdot\left[1-\left(\frac{p_1}{p_2}\right)^\frac1\kappa\right]}
\require{color}\definecolor{myred}{RGB}{255,0,0} v_{\color{myred}A}=\frac{Q_{\color{myred}Pth}\cdot\eta_{\color{myred}Pvol}\cdot10\cdot\eta_{\color{myred}Kvol}}{n\cdot d_{\color{myred}K}^{\color{myred}2}\cdot\frac\pi4}
v_A=\frac{Q_{Pth}\cdot\eta_{Pvol}\cdot10\cdot\eta_{Kvol}}{n\cdot d_K^2\cdot\frac\pi4}
\require{color}\definecolor{myred}{RGB}{255,0,0} v_{\color{myred}D}=\frac{s_{\color{myred}H}}{T_{\color{myred}D}}
v_D=\frac{s_H}{T_D}
\require{color}\definecolor{myred}{RGB}{255,0,0} V_{\color{myred}D}=A_{\color{myred}D}\cdot s_{\color{myred}H}
V_D=A_D\cdot s_H
\require{color}\definecolor{myred}{RGB}{255,0,0} V_{\color{myred}D}=A_{\color{myred}D}\cdot s_{\color{myred}H}
V_D=A_D\cdot s_H
\require{color}\definecolor{myred}{RGB}{255,0,0} V_{\color{myred}D}=n\cdot A_{\color{myred}D}\cdot s_{\color{myred}H}~~~~~~V_{\color{myred}Z}=n\cdot A_{\color{myred}Z}\cdot s_{\color{myred}H}
V_D=n\cdot A_D\cdot s_H~~~~~~V_Z=n\cdot A_Z\cdot s_H
\require{color}\definecolor{myred}{RGB}{255,0,0} v_{\color{myred}R}=\frac{Q_{\color{myred}Pth}\cdot\eta_{\color{myred}Pvol}\cdot10\cdot\eta_{\color{myred}Kvol}}{n\cdot\left(d_{\color{myred}K}^{\color{myred}2}-d_{\color{myred}S}^{\color{myred}2}\right)\cdot\frac\pi4}
v_R=\frac{Q_{Pth}\cdot\eta_{Pvol}\cdot10\cdot\eta_{Kvol}}{n\cdot\left(d_K^2-d_S^2\right)\cdot\frac\pi4}
\require{color}\definecolor{myred}{RGB}{255,0,0} v_{\color{myred}Z}=\frac{s_{\color{myred}H}}{T_{\color{myred}Z}}
v_Z=\frac{s_H}{T_Z}
\require{color}\definecolor{myred}{RGB}{255,0,0} V_{\color{myred}Z}=A_{\color{myred}Z}\cdot s_{\color{myred}H}
V_Z=A_Z\cdot s_H
\require{color}\definecolor{myred}{RGB}{255,0,0} V_{\color{myred}Z}=A_{\color{myred}Z}\cdot s_{\color{myred}H}
V_Z=A_Z\cdot s_H
\require{color}\definecolor{myred}{RGB}{255,0,0} V_{\color{myred}TS}=1-\frac{T_{\color{myred}T}}{T_{\color{myred}B}}
V_{TS}=1-\frac{T_T}{T_B}
\require{color}\definecolor{myred}{RGB}{255,0,0} W=m_{\color{myred}S}\cdot F_{\color{myred}S}\cdot s_{\color{myred}0}
W=m_S\cdot F_{S}\cdot s_{0}
\require{color}\definecolor{myred}{RGB}{255,0,0} w_{\color{myred}e}=\left(F_{\color{myred}Zmax}\cdot h_{\color{myred}z}\cdot m_{\color{myred}u}+F_{\color{myred}nh}\cdot h_{\color{myred}nh}\cdot m_{\color{myred}nh}\right)\cdot\;\frac1{3600\cdot\eta_{\color{myred}ges}\cdot m_{\color{myred}Z}}
w_e=\left(F_{Zmax}\cdot h_z\cdot m_u+F_{nh}\cdot h_{nh}\cdot m_{nh}\right)\cdot\;\frac1{3600\cdot\eta_{ges}\cdot m_{Z}}
\require{color}\definecolor{myred}{RGB}{255,0,0} W_{\color{myred}H}=m_{\color{myred}H}\cdot F_{\color{myred}St}\cdot h
W_H=m_H\cdot F_{St}\cdot h
\require{color}\definecolor{myred}{RGB}{255,0,0} W_{\color{myred}U}=\int F=m_{\color{myred}u}\cdot h_{\color{myred}z}\cdot F_{\color{myred}max}
W_U=\int F=m_u\cdot h_z\cdot F_{max}
\require{color}\definecolor{myred}{RGB}{255,0,0} W_{\color{myred}H}=\frac{2}{3}\cdot F_{\color{myred}H}\cdot h_{\color{myred}H}
W_{H}=\frac{2}{3}\cdot F_{H}\cdot h_{H}
\require{color}\definecolor{myred}{RGB}{255,0,0} W_{\color{myred}K}=\frac{2}{3}\cdot F_{\color{myred}K}\cdot h_{\color{myred}K}
W_{K}=\frac{2}{3}\cdot F_{K}\cdot h_{K}
\require{color}\definecolor{myred}{RGB}{255,0,0} y_{\color{myred}0}=\frac{\left(2\cdot r\cdot\sin\;\alpha\right)^{\color{myred}3}}{12\cdot A}
y_0=\frac{\left(2\cdot r\cdot\sin\;\alpha\right)^3}{12\cdot A}
\require{color}\definecolor{myred}{RGB}{255,0,0} z_{\color{myred}a}=\frac{\Delta h}{0,5\cdot\left(h_{\color{myred}max}+h_{\color{myred}min}\right)}
z_a=\frac{\Delta h}{0,5\cdot\left(h_{max}+h_{min}\right)}
\require{color}\definecolor{myred}{RGB}{255,0,0} z_{\color{myred}b}=\frac{\Delta h}{h_{\color{myred}min}}
z_b=\frac{\Delta h}{h_{min}}
© 2023 4Ming e.K.
Kdia v1.3.1
4Ming® Prototypen, Werkzeuge, Ziehkissen, Pressen
Unternehmensberatung, Prozessentwicklung & Prozessoptimierung
Interaktives technisches Handbuch zur Blechumformung