203 Articles  2254 Elements

Optimal box II

25.4.4
Optimal box
Fig. 1
Optimal box with bottom
B* Optimum width h* Optimum height C Aspect ratio
Eqn. 1
\require{color}\definecolor{myred}{RGB}{255,0,0} B^\ast=\sqrt[3]{\left(\frac V{2\cdot C}+\frac V{2\cdot C^{\color{myred}2}}\right)}
Eqn. 2
\require{color}\definecolor{myred}{RGB}{255,0,0} h=\frac V{C\cdot B^{\color{myred}2}}
Eqn. 3
\require{color}\definecolor{myred}{RGB}{255,0,0} A=2 \cdot B^{\color{myred}2}\cdot C+2\cdot B\cdot H\cdot\left(1+C\right)
Eqn. 4
\require{color}\definecolor{myred}{RGB}{255,0,0} q=\frac{A^\ast}{A_{\color{myred}ref}}-1
Optimum widthB*=82.21mm 
Optimal heighth*=98.65mm 
Optimal areaA*=60,822mm2 
Heighthref=66.67mm 
SurfaceAref=63,333.3mm2 
Percent lossq=-3.97% 
VolumeVol = 1L
Reference widthBref = 100mm
ConstantC = 1.5
Calc 1

Example 1 A rectangular container with a filling volume of 1 L is required. One side of the base area (C x B) is 1.5 times larger than the required dimension B --> C = 1.5. The optimal dimension B is calculated as 82.2 mm and the optimal height as 98.7 mm.

Due to the available installation space, dimension B is set at 100 mm, resulting in a tank height of 67 mm. This leads to an area loss of -4%.

© 2024 4Ming e.K.
Kdia v1.3.1
4Ming® Prototypes, tools, die cushions, presses
Management consulting, process development & process optimization
Interactive Sheet Metal Forming Technical Guide