Spring back

16.2

During the bending process ① an elastic-plastic load occurs. When the workpiece is then unloaded ②, the remaining internal stresses in the cross section lead to a restoring moment, which causes the workpiece to spring back.

Elastic spring back is a central phenomenon when bending workpieces and plays a crucial role in the planning and execution of bending processes. To achieve the desired end product, it is essential to accurately predict the effects of elastic spring back and compensate accordingly. This can be achieved either through initial excessive bending or through an adjusted post-bending process.

Spring back torque
Fig. 1
Stresses in the bending zone
① Tensions under load ② Tensions relieved
εi internal strains εa external strains e elastic region p plastic region Re yield strength

The phenomenon of spring back is a ubiquitous factor in all bending processes and must be taken into account for precise and error-free execution of the process. In order to ensure effective compensation for spring back , it is essential to precisely calculate the springback angle or radius in advance and incorporate it into the bending process.

Spring back sheet metal
Fig. 2
Spring back bending
α1   Bending angle under load α2   Workpiece angle unloaded Δα Springback angle rm1 mean bending radius under load rm2 mean bending radius unloaded ri1 Inner bending radius under load ri2 Inner bending radius unloaded s0 Sheet thickness
Eqn. 1
\require{color}\definecolor{myred}{RGB}{255,0,0} k=\frac{\alpha_{\color{myred}2}}{\alpha_{\color{myred}1}}=\frac{r_{\color{myred}m1}}{r_{\color{myred}m2}}=\frac{r_{\color{myred}i1}+0,5\cdot s_{\color{myred}0}}{r_{\color{myred}i2}+0,5\cdot s_{\color{myred}0}}=\frac1{1+3\cdot{\displaystyle\frac{R_{\color{myred}p0,2}}E}\cdot\left(c+{\displaystyle\frac12}\right)}
Eqn. 2
\require{color}\definecolor{myred}{RGB}{255,0,0} c=\frac{r_{\color{myred}i2}}{s_{\color{myred}0}}
Eqn. 3
\require{color}\definecolor{myred}{RGB}{255,0,0} r_{\color{myred}i1}=k\cdot\left(r_{\color{myred}i2}+0,5\cdot s_{\color{myred}0}\right)-0,5\cdot s_{\color{myred}0}
Eqn. 4
\require{color}\definecolor{myred}{RGB}{255,0,0} \alpha_{\color{myred}1}>\alpha_{\color{myred}2}=\frac{\alpha_{\color{myred}2}}k;\;\Delta\alpha=\alpha_{\color{myred}1}-\alpha_{\color{myred}2}
Springback factork=0.981 
Bending factorc=5 
Inner radiusri1=4.9mm 
Bending angleα1=91.7° 
Change angleΔα=1.697° 
Yield strengthRp 0,2 = 80MPa
Young's modulusE = 70GPa
Workpiece inner radiusri2 = 5mm
Sheet thicknesss0 = 1mm
Workpiece angleα2 = 90°
Calc 1
Springback factor k after21
The bending factor c is material-specific and must not fall below minimum values.
Material parameters eg from the table for sample materials.
Spring back Diagram
Fig. 3
Springback factor k depending on the bending factor c for different materials

Leaving the bending punch in the bending die for a longer period of time does not change the springback behavior. By pressing further, a reduction in spring back can be achieved via the follow-up effect.8

8
Oehler; KaiserSchnitt-, Stanz- und ZiehwerkzeugeSpringer VerlagBerlin19937. Auflage
21
Kluge, SiegfriedProzesse der BlechumformungCarl Hanser VerlagMünchen2020
© 2023 4Ming e.K.
Kdia v1.3.1
4Ming® Prototypes, tools, die cushions, presses
Management consulting, process development & process optimization
Interactive Sheet Metal Forming Technical Guide