Bending force III

16.7.3
Die bending
Fig. 1
V-Bending21
lB Bending length εa Elongation of outer fiber FSt Punch force rM Die radius rSt Punch radius ub Bending gap s0 Wall thickness
Eqn. 1
\require{color}\definecolor{myred}{RGB}{255,0,0} F_{\color{myred}St\;max}=\frac{k_{\color{myred}fm}\cdot s_{\color{myred}0}^{\color{myred}2}\cdot l_{\color{myred}B}}{2\cdot q}\cdot\xi
Eqn. 2
\require{color}\definecolor{myred}{RGB}{255,0,0} F_{\color{myred}St\;max\;UT}\geq2\cdot F_{\color{myred}St\;max}
Eqn. 3
\require{color}\definecolor{myred}{RGB}{255,0,0} \xi=\frac{\cos\left(\frac{\mathrm\pi}2-arc\cos\left(\frac{r_{\color{myred}M}+r_{\color{myred}St}+s_{\color{myred}0}}{r_{\color{myred}M}+r_{\color{myred}St}+u_{\color{myred}b}}\right)\right)+\mu\cdot\sin\left(\frac{\mathrm\pi}2-arc\cos\left(\frac{r_{\color{myred}M}+r_{\color{myred}St}+s_{\color{myred}0}}{r_{\color{myred}M}+r_{\color{myred}St}+u_{\color{myred}b}}\right)\right)}{\sqrt{\left(\frac{r_{\color{myred}M}+r_{\color{myred}St}+u_{\color{myred}b}}{r_{\color{myred}M}+r_{\color{myred}St}+s_{\color{myred}0}}\right)^{\color{myred}2}-1}+\mu\cdot\frac{s_{\color{myred}0}}{2\cdot\left(r_{\color{myred}M}+r_{\color{myred}St}+s_{\color{myred}0}\right)}}
Eqn. 4
\require{color}\definecolor{myred}{RGB}{255,0,0} \varphi_{\color{myred}m}=\ln(1+\frac{\varepsilon_{\color{myred}a}}2)=\ln\left(1+\frac1{4\cdot c+2}\right)
Eqn. 5
\require{color}\definecolor{myred}{RGB}{255,0,0} c=\frac{r_{\color{myred}St}}{s_{\color{myred}0}}
Eqn. 6
\require{color}\definecolor{myred}{RGB}{255,0,0} W_{\color{myred}B}=F_{\color{myred}St\;max}\cdot h_{\color{myred}B}\cdot m_{\color{myred}B}
Max. punch forceFSt max=3.04kN 
Maximum punch force UTFSt max UT>6.08kN 
Coefficientξ=1.12 
Medium natural strainφm=0.044 
Bending factorc=5 
Bending workWB=34.22J 
Die radiusrM = 5mm
Punch radiusrSt = 5mm
Sheet thicknesss0 = 1mm
Bending gapub = 2mm
Bending lengthlB = 100mm
Average work hardeningkfm = 600MPa
Coefficient of frictionμ = 0.1
Mean factor bendingmB = 0.75
Bend heighthB = 15mm
Calc 1
Maximum force FSt max according to Kluge21
For kfm, the tensile strength Rm can be used as an approximation.
By using a flow curve and the average degree of deformation φm
more precise values ​​for kfm can be determined.

To reduce spring back , the die must sit hard. The maximum punch force FSt max should be multiplied by a factor greater than 2.

The coefficient of friction table for sheet metal forming should be used as the friction value μ.

21
Kluge, SiegfriedProzesse der BlechumformungCarl Hanser VerlagMünchen2020
© 2023 4Ming e.K.
Kdia v1.3.1
4Ming® Prototypes, tools, die cushions, presses
Management consulting, process development & process optimization
Interactive Sheet Metal Forming Technical Guide